A Novel Approach for the Removal of Lead(II) Ion from Wastewater Using Mucilaginous Leaves of Diceriocaryum eriocarpum Plant

نویسندگان

  • Joshua N. Edokpayi
  • John O. Odiyo
  • Titus A. M. Msagati
  • Elizabeth O. Popoola
  • Marc A. Rosen
چکیده

Lead(II) ion is a very toxic element known to cause detrimental effects to human health even at very low concentrations. An adsorbent prepared using mucilaginous leaves from Diceriocaryum eriocarpum plant (DEP) was used for the adsorption of lead(II) ion from aqueous solution. Batch experiments were performed on simulated aqueous solutions under optimized conditions of adsorbent dosage, contact time, pH and initial lead(II) ion concentration at 298 K. The Langmuir isotherm model more suitably described the adsorption process than the Freundlich model with linearized coefficients of 0.9661 and 0.9547, respectively. Pseudo-second order kinetic equation best described the kinetics of the reaction. Fourier transform infra-red analysis confirmed the presence of amino (–NH), carbonyl (–C=O) and hydroxyl (–OH) functional groups. Application of the prepared adsorbent to wastewater samples of 10 mg/L and 12 mg/L of lead(II) ion concentration taken from a waste stabilization pond showed removal efficiencies of 95.8% and 96.4%, respectively. Futhermore, 0.1 M HCl was a better desorbing agent than 0.1 M NaOH and de-ionized water. The experimental data obtained demonstrated that mucilaginous leaves from DEP can be used as a suitable adsorbent for lead(II) ion removal from wastewater. OPEN ACCESS Sustainability 2015, 7 14027

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selective Removal of Lead (II) Ion from Wastewater Using Superparamagnetic Monodispersed Iron Oxide (Fe3O4) Nanoparticles as a Effective Adsorbent

This study investigated the applicability of polyethylene glycol (PEG-4000) coated Fe3O4 magnetic nanoparticles for the selective removal of toxic pb (II) ion from wastewater. The Fe3O4 magnetic nanoparticles of 24 nm were synthesized using a coprecipitation method and characterized by Scanning electron microscopy (SEM), vibratingsample magnetometer (VSM), and X-ray diffraction (XRD). SEM image...

متن کامل

Removal of lead ions from industrial wastewater: A review of Removal methods

Background and aims: The removing of (potential) toxic heavy metal ions from sewage, especially in industrial and mining waste effluents, has been widely studied in recent years. The aim of present study was to investigate the various methods for lead removal of lead ions from industrial wastewater. Methods: This study was a review research. Data were collected through different databases in va...

متن کامل

Potentiality of agricultural adsorbent for the sequestering of metal ions from wastewater

The expensive nature of metal ions detoxification from wastewater have restricted the use of conventional treatment technologies. Cheap, alternative measures have been adopted to eliminate metal contamination, and adsorptions using agricultural adsorbents seem to be the way forward. The use of agricultural adsorbents for cadmium (II), copper (II) and lead (II) ion removal has gained more intere...

متن کامل

Heavy metals removal from wastewater by using different kinds of magnetite nanoadsorbents: effects of different organic and inorganic coatings on the removal of copper and lead ions

Co-precipitation procedure was applied in order to obtain different kinds of magnetic nanoadsobents for the removal of Pb(II) and Cu(II) toxic metal ions from wastewater samples. Prepared nanoadsorbents were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometer (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The average sizes of t...

متن کامل

Biosorption of Lead (II) and Zinc (II) ions by pre-treated biomass of phanerochaete chrysosporium

The biosorption of heavy metals can be an effective process for the removal of such metal ions from aqueous solutions. In this study, the adsorption properties of nonliving biomass of phanerochaete chrysosporium for Pb (II) and Zn (II) were investigated by the use of batch adsorption techniques. The effects of initial metal ion concentration, initial pH, biosorbent concentration, stirring speed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015